Maximum-speed curve-running biomechanics of sprinters with and without unilateral leg amputations

Author:

Taboga Paolo12,Kram Rodger2,Grabowski Alena M.23

Affiliation:

1. University of Udine, Department of Medical and Biological Sciences, P.le M. Kolbe 4, Udine 33100, Italy

2. Integrative Physiology Department, University of Colorado Boulder, Boulder, CO 80309, USA

3. Eastern Colorado Healthcare System, Department of Veterans Affairs, Denver, CO 80220, USA

Abstract

ABSTRACT On curves, non-amputees' maximum running speed is slower on smaller radii and thought to be limited by the inside leg's mechanics. Similar speed decreases would be expected for non-amputees in both counterclockwise and clockwise directions because they have symmetric legs. However, sprinters with unilateral leg amputation have asymmetric legs, which may differentially affect curve-running performance and Paralympic competitions. To investigate this and understand the biomechanical basis of curve running, we compared maximum curve-running (radius 17.2 m) performance and stride kinematics of six non-amputee sprinters and 11 sprinters with a transtibial amputation. Subjects performed randomized, counterbalanced trials: two straight, two counterclockwise curves and two clockwise curves. Non-amputees and sprinters with an amputation all ran slower on curves compared with straight running, but with different kinematics. Non-amputees ran 1.9% slower clockwise compared with counterclockwise (P<0.05). Sprinters with an amputation ran 3.9% slower with their affected leg on the inside compared with the outside of the curve (P<0.05). Non-amputees reduced stride length and frequency in both curve directions compared with straight running. Sprinters with an amputation also reduced stride length in both curve-running directions, but reduced stride frequency only on curves with the affected leg on the inside. During curve running, non-amputees and athletes with an amputation had longer contact times with their inside compared with their outside leg, suggesting that the inside leg limits performance. For sprinters with an amputation, the prolonged contact times of the affected versus unaffected leg seem to limit maximum running speed during both straight running and running on curves with the affected leg on the inside.

Funder

BADER Consortium, DoD, CDMRP cooperative agreement

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Maximum velocity and leg-specific ground reaction force production change with radius during flat curve sprinting;Journal of Experimental Biology;2024-02-15

2. Posture Estimation of Curve Running Motion Using Nano-Biosensor and Machine Learning;International Journal of Interactive Multimedia and Artificial Intelligence;2024

3. Gait Analysis;Motion Analysis of Biological Systems;2024

4. Principles of motion;Clinical Biomechanics in Human Locomotion;2023

5. Analysis of biomechanics in athletes with disabilities: a systematic and narrative review;Fisioterapia em Movimento;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3