Abstract
High Modulus Asphalt Concrete base course of a motorway under construction cracked severely during the first winter after paving. The new viscoelastic method of thermal stress calculation was used to gain a better understanding of the mechanism of thermal stresses and development of low-temperature cracking in asphalt layers. This paper presents pavement structure and materials, thermal cracks intensity assessment, field and laboratory testing and the outline of the new viscoelastic method. Thermal stresses in the HMAC base course were calculated at its surface and at the depth of 5 cm at the time when transverse cracking occurred. The calculated thermal stresses were compared with tensile strength of the material. Probability of low-temperature cracking was determined. The results presented in the paper confirmed that the new method of thermal stress calculation was a valuable tool for analysis of low-temperature cracking. Several uncertainties and unsolved issues related to low-temperature cracking, which were discovered during the analysis, were described.
Publisher
Road and Bridge Research Institute
Reference28 articles.
1. Judycki J.: A new viscoelastic method of calculation of low-temperature thermal stresses in asphalt layers of pavements. International Journal of Pavement Engineering, 19, 1 2017, 24-36, DOI: 10.1080/10298436.2016.1149840
2. Judycki J., Jaskuła P., Dołżycki B., Pszczoła M., Jaczewski M., Ryś D., Stienss M.: Investigation of low-temperature cracking in newly constructed high- -modulus asphalt concrete base course of a motorway pavement. Road Materials and Pavement Design, 16, 1, 2015, 362-388, DOI: 10.1080/14680629.2015.1029674
3. Pszczoła M.: Low-temperature cracking of asphalt layers of pavements. PhD Thesis, Gdańsk University of Technology, Gdańsk, Poland, 2006, 1-38, (in Polish)
4. Geng L., Ren R., Zhong Y., Xu Q.: Thermal stresses of flexible pavement with consideration of temperature-dependent material characteristics using stiffness matrix method. Mechanics of Time-Dependent Materials, 15, 2011, 73-87, DOI: 10.1007/s11043-010-9125-6
5. Marasteanu M., Butler W., Bahia H., Wiliams C., et al.: Investigation of Low Temperature Cracking in Asphalt Pavements, National Pooled Fund Study - Phase II. Research Project 2012-23, Department of Civil Engineering, University of Minnesota, 2012, https://www.dot.state.mn.us/research/TS/2012/2012-23.pdf
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献