Field Evaluation of High Modulus Asphalt Concrete Resistance to Low-Temperature Cracking

Author:

Pszczola MarekORCID,Rys DawidORCID,Jaczewski Mariusz

Abstract

High-modulus asphalt concrete has numerous advantages in comparison to conventional asphalt concrete, including increased resistance to permanent deformations and increased pavement fatigue life. However, previous studies have shown that the construction of road pavements with High Modulus Asphalt Concrete (HMAC) may significantly increase the risk of low-temperature cracking. Those observations were the motivation for the research presented in this paper. Four test sections with HMAC used in base and binder courses were evaluated in the study. Field investigations of the number of low-temperature cracks were performed over several years. It was established that the number of new low-temperature cracks is susceptible to many random factors, and the statistical term “reversion to the mean” should be considered. A new factor named Increase in Cracking Index was developed to analyze the resistance of pavement to low-temperature cracking. For all the considered field sections, samples were cut from each asphalt layer, and Thermal Stress Restrained Specimen Tests were performed in the laboratory. Correlations of temperature at failure and cryogenic stresses with the cracking intensity observed in the field were analyzed. The paper provides practical suggestions for pavement designers. When the use of high modulus asphalt concrete is planned for binder course and asphalt base, which may result in lower resistance to low-temperature cracking of pavement than in the case of conventional asphalt concrete, it is advisable to apply a wearing course with improved resistance to low-temperature cracking. Such an approach may compensate for the adverse effects of usage of high modulus asphalt concrete.

Funder

National Science Center

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3