Abstract
<p class="p1">With the tremendous development of computer graphic rendering technology, photorealistic computer graphic images are difficult to differentiate from photo graphic images. In this article, a method is proposed based on discrete wavelet transform based binary statistical image features to distinguish computer graphic from photo graphic images using the support vector machine classifier. Textural descriptors extracted using binary statistical image features are different for computer graphic and photo graphic which are based on learning of natural image statistic filters. Input RGB image is first converted into grayscale and decomposed into sub-bands using Haar discrete wavelet transform and then binary statistical image features are extracted. Fuzzy entropy based feature subset selection is employed to choose relevant features. Experimental results using Columbia database show that the method achieves good detection accuracy.</p>
Publisher
Defence Scientific Information and Documentation Centre
Subject
Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献