Author:
Hanmandlu Madasu,Das Anirban
Abstract
<p>Content-based image retrieval focuses on intuitive and efficient methods for retrieving images from databases based on the content of the images. A new entropy function that serves as a measure of information content in an image termed as 'an information theoretic measure' is devised in this paper. Among the various query paradigms, 'query by example' (QBE) is adopted to set a query image for retrieval from a large image database. In this paper, colour and texture features are extracted using the new entropy function and the dominant colour is considered as a visual feature for a particular set of images. Thus colour and texture features constitute the two-dimensional feature vector for indexing the images. The low dimensionality of the feature vector speeds up the atomic query. Indices in a large database system help retrieve the images relevant to the query image without looking at every image in the database. The entropy values of colour and texture and the dominant colour are considered for measuring the similarity. The utility of the proposed image retrieval system based on the information theoretic measures is demonstrated on a benchmark dataset.</p><p><strong>Defence Science Journal, 2011, 61(5), pp.415-430</strong><strong><strong>, DOI:http://dx.doi.org/10.14429/dsj.61.1177</strong></strong></p>
Publisher
Defence Scientific Information and Documentation Centre
Subject
Electrical and Electronic Engineering,Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Biomedical Engineering,General Chemical Engineering
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献