MSIF: Multi-source information fusion based on information sets

Author:

Yang Feifei1,Zhang Pengfei2

Affiliation:

1. School of Scientific research office, Guangxi University of Finance and Economics, Nanning, China

2. School of Computing and Artificial Intelligence, Southwest JiaoTong University, Chengdu, Sichuan, China

Abstract

 Multi-source information fusion is a sophisticated estimating technique that enables users to analyze more precisely complex situations by successfully merging key evidence in the vast, varied, and occasionally contradictory data obtained from various sources. Restricted by the data collection technology and incomplete data of information sources, it may lead to large uncertainty in the fusion process and affect the quality of fusion. Reducing uncertainty in the fusion process is one of the most important challenges for information fusion. In view of this, a multi-source information fusion method based on information sets (MSIF) is proposed in this paper. The information set is a new method for the representation of granularized information source values using the entropy framework in the possibilistic domain. First, four types of common membership functions are used to construct the possibilistic domain as the information gain function (or agent). Then, Shannon agent entropy and Shannon inverse agent entropy are defined, and their summation is used to evaluate the total uncertainty of the attribute values and agents. Finally, an MSIF algorithm is designed by infimum-measure approach. The experimental results show that the performance of Gaussian kernel function is good, which provides an effective method for fusing multi-source numerical data.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference36 articles.

1. Pan Q. , Multi-soure information fusion theory and its applications, Tsinghua University Press, 2013.

2. Llinas J. and Waltz E. , Multisensor data fusion, Artech Housse Publisher, 1990.

3. Multi-source information fusion based on rough set theory: A review;Zhang;Information Fusion,2021

4. Domain sentiment dictionary construction and optimization based on multi-source information fusion;Chen;Intelligent Data Analysis,2020

5. The influence factors of the stability of tailings dam based on multi-source information fusion method;Liang;Journal of Intelligent & Fuzzy Systems,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3