The Analysis of Support Vector Machine (SVM) on Monthly Covid-19 Case Classification

Author:

Sitepu Rifaldo

Abstract

Covid-19 is disease caused by the new corona virus called Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The effect of this virus usually causes infection on respiratory system. Covid-19 was rapidly spread globally. Experts said that the factor that caused this to spread rapidly is human mobility. Therefore, several countries create new rules so that it can suppress the spreading of this disease, by prohibiting a large scale gathering, keeping away distance with each other, mandatory rule of using mask, and the prohibition for the entry of their country. This research proposes a performance analysis of Support Vector Machine (SVM) to classify the monthly data of covid-19. The data used in this research is a series of covid-19 data of towns in Bandung from November 2020 until December 2021. From conducting this research It is found that the best accuracy was found on December 2021 with the accuracy of 100%, followed by July and August with the accuracy of 97%, and October with the value of 90%. We can conclude that Support Vector Machine (SVM), is a good method on classifying the monthly covid-19 data.

Publisher

School of Computing, Telkom University

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3