Optimizing Machine Learning for Daily Rainfall Prediction in Bogor City, Indonesia: A Two-Stage Statistical Downscaling Approach

Author:

Arassah Fradha Intan1,Sadik Kusman1,Sartono Bagus1,Sofan Parwati

Affiliation:

1. Institut Pertanian Bogor

Abstract

Abstract

Statistics for machine learning come as a significant tool for studying data. General Circulation Model (GCM) are the most sophisticated model for predicting climate and weather. This study deployed a two stage of machine learning model for statistical downscaling approach to predict daily rainfall in Bogor, Indonesia. This study compared three different domains of GCM and compare two different approaches to handling missing data. First, we made two datasets based on approaches to handling missing value. Then, Support Vector Classification model was applied to classify rainy and non-rainy days. Finally, we developed a model of rainy-day data using Recurrent Neural Networks (RNN) method to estimate daily rainfall. The results show that using random forest imputation for handling missing value can increase the accuracy and lower the RMSE of the model. The best domain from GCM data is 5 km from local station climatology. SVC model with radial basis kernel is the best model for classify rainy and non-rainy data with 0.985 (98.5%) accuracy and RNN model have RMSE at 16.19. Accurately estimating the increase or decrease in extreme rainfall is crucial to provide effective recommendations in disaster mitigation efforts.

Publisher

Springer Science and Business Media LLC

Reference33 articles.

1. Prediksi Kinerja Akademik Mahasiswa Menggunakan Machine Learning dengan Sequential Minimal Optimization untuk Pengelola Program Studi;Iwan Nurhidayat A;J Inform Eng Educational Technol,2021

2. Pemanfaatan Machine Learning dalam Berbagai Bidang;Roihan A;Indonesian J Comput Inform Technol Rev paper,2019

3. Supervised Machine Learning: A Brief Primer;Jiang T;Behav Ther,2020

4. James G, Witten D, Hastie T, Tibshirani R. An Introduction to Statistical Learning with Applications in R, Springer Second Edition. 2021.

5. Determination of General Circulation Model Domain Using LASSO to Improve Rainfall Prediction Accuracy in West Java;Fadhli N,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3