1. 1) 楠田将之, 松本麻美, 片岡宏夫:軌道変位データに基づく浮きまくらぎ検出手法, 土木学会論文集 A2(応用力学), Vol. 74, No. 2(応用力学論文集 Vol. 21), pp. I_543-I_551, 2018.[Kusuda, M., Matsumoto, M. and Kataoka, H.: Detection method for unsupported sleepers based on track irregularity data, Journal of Japan Society of Civil Engineering, Ser. A2(Applied Mechanics), Vol. 74, No. 2, pp. I_543-I_551, 2018.]
2. 2) 中村俊敬, 蘇軸, 長山智則:継ぎ目を考慮した浮きまくらぎ検知手法の数値的検討, 土木学会第 77 回年次学術講演会, VI-935, 2022
3. 3) Sresakoolchai, J. and Kaewuruen, S.: Prognostics of unsupported railway sleepers and their severity diagnostics using machine learning, Scientific Report, 12, 6064, 2022.
4. 4) 石井博典, 藤野陽三, 水野裕介, 貝戸清之:営業車両の走行時の車両振動を用いた軌道モニタリングシステム(TIMS)の開発, 土木学会論文集 F, Vol. 64, No. 1, pp. 44-61, 2008.[Ishii, H., Fujino, Y., Mizuno, Y. and Kaito, K.: A development of train intelligent monitoring system using acceleration of train, Journal of Japan Society of Civil Engineering, Vol. 64, No. 1, pp. 44-61, 2008.]
5. 5) Saravanan, T. J.: Response Based Track Profile Estimation Using Observable Train Models with Numerical and Experimental Validations, 東京大学大学院工学系研究科社会基盤学専攻博士論文, 2018.