Prognostics of unsupported railway sleepers and their severity diagnostics using machine learning

Author:

Sresakoolchai Jessada,Kaewunruen Sakdirat

Abstract

AbstractRailway sleepers are safety–critical components of a railway structure. They support ballasted track superstructure and are a critical factor in track geometry and track components’ deterioration. Unsupported sleepers are a common issue incurred after tracks have been utilized. When unsupported sleepers are present, they cause differential settlements of track superstructures, additional dynamic loading, and excessive train-track vibrations which affect passenger comfort, safety, and maintenance cost. This study is the world's first to develop new machine learning models to prognose and better diagnose defect severities of unsupported sleepers aligned with practical track inspection guidelines. Data used to develop machine learning models are based on a verified finite element model with actual field measurements, enabling unbiased full data ranges that govern all defect conditions. Different conditions of unsupported sleepers can be explored by varying locations of unsupported sleepers and the number of unsupported sleepers. Also, other operational parameters can be addressed such as speeds of rolling stock, the roughness of rail surface, and vertical stiffness of wheel-rail contact. In total, 2016 data sets have been obtained. Axle box accelerations are adopted as key indicators for machine learning models. Machine learning techniques used in the study are the convolutional neural network, recurrent neural network, ResNet, and fully convolutional neural network. Data fusion and assimilation have been conducted since the data points are dependent on the train speeds. Our new results reveal a breakthrough essential for real-world applications that the convolutional neural network model provides the best accuracy in both unsupported sleeper prognostics and severity identification. The accuracies of detection and severity identification are 99.34% and 97.02% respectively.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. EMF-Net: An edge-guided multi-feature fusion network for text manipulation detection;Expert Systems with Applications;2024-09

2. Track Geometry Estimation and Hanging Sleeper Detection Using Vehicle Dynamic Responses with Unknown System Parameters;ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering;2024-09

3. Effect of unsupported sleepers on vertical levelling loss of heavy-haul railway track geometry under cyclic loadings;Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit;2024-07-22

4. Detection and assessment of rail discontinuities using a multibody vehicle-track model;Journal of Physics: Conference Series;2024-06-01

5. A study on the application of convolutional neural networks for the maintenance of railway tracks;Discover Artificial Intelligence;2024-05-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3