CRASH ENERGY ABSORPTION OF MULTI-SEGMENTS CRASH BOX UNDER FRONTAL LOAD

Author:

Choiron Moch. Agus,Purnowidodo Anindito,Siswanto Eko,Hidayati Nafisah Arina

Abstract

Crash box designs have been developed in order to obtain the optimum crashworthiness performance. Circular cross section is first investigated with one segment design, it rather influenced by its length which is being sensitive to the buckling occurrence. In this study, the crash box with multi-segments design is investigated and the deformation behavior and crash energy absorption are observed.  The crash box modelling is performed by finite element analysis on cylindrical crash box with multi segments design. The numbers of crash box segments used in this investigation are two segments, three segments with a sequence diameter and three segments with alternating diameter. The crash test components were impactor, crash box, and fixed rigid base. Impactor and the fixed base material are modelled as a rigid, and crash box material as bilinear isotropic hardening. Crash box length of 100 mm and frontal crash velocity of 16 km/jam are selected. Crash box material of Aluminum Alloy is used. Based on simulation results, it can be shown that three segments crash box with alternating diameter design has the largest crash energy absorption. From deformation pattern has showed that three segments crash box absorbs low energy at the beginning of crashing. Energy absorption start increased at the boundary area of the first, second and three segments as a result of increasing inertia where critical load has increased hence buckling phenomenon could be minimized. 

Publisher

Penerbit UTM Press

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact performance of unconventional trigger holes;Materials Testing;2024-01-29

2. Gradually collapsible crash boxes with bonded aluminium tubes;Emerging Materials Research;2020-12-01

3. Optimization of two segments crash box with rubber joint using response surface methodology;HIGH-ENERGY PROCESSES IN CONDENSED MATTER (HEPCM 2020): Proceedings of the XXVII Conference on High-Energy Processes in Condensed Matter, dedicated to the 90th anniversary of the birth of RI Soloukhin;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3