THE EFFECT OF ALKALINE TREATMENT AND FIBER LENGTH ON PINEAPPLE LEAF FIBER REINFORCED POLY LACTIC ACID BIOCOMPOSITES

Author:

Ramli Siti Nur Rabiatutadawiah,Md. Fadzullah Siti Hajar Sheikh,Mustafa Zaleha

Abstract

The awareness of natural fibers as alternative materials to synthetic fibers in composite applications have increased briskly due to lightweight, non-toxic, low cost and abundantly available. To-date, there are still limited works on fully biodegradable composites also known as biocomposites, especially using long pineapple leaf fiber (PALF) reinforced poly lactic acid biocomposites. Thus, this study presents an investigation of the effects of alkaline treatment and use of different fiber length on the mechanical performance of pineapple leaf fibers reinforced poly lactic acid, biocomposites. Flexural testing was conducted via ASTM D790. The results showed enhancement in flexural properties of the biocomposites when the PALF fibers were treated with alkaline treatment, suggesting an effect of improving mechanical interlocking between matrix and reinforcement due to rougher fiber surface. The flexural strength and modulus of long treated fibers increased from 56.47 MPa and 4.24 GPa to 114.03 MPa and 5.70 GPa respectively compared to long untreated fibers.  In addition, the effect of fiber length is also proven to affect the overall performance of the biocomposites, in which the long PALF fiber composites exhibit superior flexural properties to those of the short fiber reinforced PLA biocomposites, i.e. flexural modulus of 5.7 GPa and 0.22 GPa for the long fiber composites and short fiber composites respectively. The existence of sodium hydroxide, (NaOH) on PALF fibers were confirmed by FTIR analysis. Surface morphology of both untreated and treated samples was studied by using a scanning electron microscope (SEM). Results from both analyses suggest removal of lignin and hemicellulose on the alkaline-treated PALF fiber reinforced composites led to a rougher fibers surface and formed a better fiber-matrix adhesion, as reflected in the flexural properties of the biocomposites as reported above.

Publisher

Penerbit UTM Press

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3