Performance and Mechanical Characterization of Tufted and Untufted Woven Pine Apple Leaf Fibre Reinforced with Poly Lactic Acid Green Composites

Author:

Parisithu B.1,Alagumurthi N.1,Anand G.2

Affiliation:

1. Puducherry Technological University (PTU)

2. Acharya College of Engineering Technology

Abstract

This study examines the impact of through-the-thickness tufted natural Woven Pineapple leaf fibres on the tensile and flexural characteristics of sandwich structures. The tufting process seeks to improve the performance of a sandwich structure by ignoring the delamination between the skin and core. Strengthen sandwich structure interlaminations and make them more resistant to damage. This project focuses on creating and implementing an efficient through-the-thickness reinforcing technique based on hand tufting reinforcement. Totally seven specimens were fabricated six tufted and one untufted specimen. Samples that were tufted had three distinct tufting distances (10, 20, and 30 mm, respectively) and two different angle orientations (450,900). An empirical study was developed that comprised tensile and flexural testing of the tufted and untufted sandwich panels formulate of natural pineapple leaf fiber reinforced with Polylactic acid in order to evaluate the impact of tufting on sandwich structure. The outcome displays the fabrication-specific mechanical characteristics of composite laminates. In the tensile mechanical test, the strength of the tufted specimen (450,900) increased by 17% and 34%, respectively, in comparison to the untufted specimen. According to the results of the flexural test, the highest flexural strength for a tufted specimen is between 35% and 67% when compared to an untufted specimen. This indicates that the tufting was successful in enhancing both the in-plane and out-of-plane mechanical properties of composites. Finally, the fracture surface of the tested specimens is examined using scanning electron microscopy (SEM).

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3