UTILIZATION OF MODIFIED PLASTIC WASTE ON THE POROUS CONCRETE BLOCK CONTAINING FINE AGGREGATE

Author:

W. M. Supit SteveORCID,- Priyono

Abstract

Modification of plastic waste to be use as a replacement of coarse aggregate on the manufacturing of porous concrete block is presented in this paper. Different proportions of sand content were used with percentage of 1%, 5% and 10% by total weight of the sample to investigate its effects on the performance of porous concrete blocks based on some conducted tests i.e., compression and flexural load resistance, porosity, and infiltration rate tests. The results show that the porous concrete block with 5% of sand addition showed better strength properties compared to other mixtures. With 5% modified PET coarse aggregate, the compressive strength decreased for about 26%. Similar trends can be also observed when using PP and HDPE plastic aggregate. However, the inclusion of PET aggregate in porous concrete blocks with 5% of sand inclusion does not significantly show better strength indicating the weak bonding between plastic and cement mortar was performed in porous concrete block matrix as evident through the Scanning Electron Microscopy analysis. The formation of pores and higher permeability can be also expected after adding PET plastic waste as seen in porosity and infiltration rate results. Furthermore, the utilization of coarse aggregate made from plastic waste in porous concrete blocks containing fine aggregate is a potential solution on plastic waste management for permeable pavement including foot traffic and light load application.

Publisher

Penerbit UTM Press

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3