Assessment of POFA-Pervious Concrete Performance with Oil Palm Shells as a Partial Aggregate Replacement

Author:

Jaafar Mohd Faizal Md.,Muthusamy Khairunisa

Abstract

Introduction In Malaysia today, periods of excessive rain can result in flooding poses a significant challenge. The existing drainage system struggles to manage the wastewater effectively. In addressing the persistent issue of flooding in Malaysia, this issue’s solution was recommended to introduce pervious concrete (PC). Recognizing the urgency of finding sustainable and environmentally friendly solutions, the present study focuses on the application of PC as a potential remedy that allows water to infiltrate through its porous structure. Aims Despite the potential benefits of PC, there exists a notable gap in the understanding of its performance, especially when incorporating oil palm shells (OPS) as a partial aggregate replacement in POFA-pervious concrete (PPC). OPS is an agricultural waste material abundant in palm oil-producing regions, remarkably in Malaysia. This research aims to bridge this gap to evaluate the performance of PPC and PPC with OPS. By addressing the performance of PPC at different OPS replacement levels and curing ages, the lack of such detailed investigations in the existing body of knowledge underscores the novelty and importance of this present research. Methods Experimental tests were conducted to evaluate the performance of PPC and PPC incorporating OPS comprising density, water absorption, void content, and compressive strength. All the tests were conducted at 7 and 28 days after the hardened concrete was cured in water. Results The results revealed that as the OPS content increased, the compressive strength of PPC with OPS decreased but was significantly higher than recommended in the standard. Conversely, the reduction in strength was accompanied by an improvement in water absorption, making PPC encompassing OPS suitable for applications. The void content of the PPC increased with higher OPS replacement levels, indicating an increase in porosity. This increase in porosity led to a decrease in the density of the PPC incorporating OPS. Conclusion The findings of this research suggest that the incorporation of OPS as an aggregate replacement in PPC can offer advantages in terms of water absorption. The inclusion of 10% OPS significantly and positively affects the performance of PPC.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3