Developing Real Estate Automated Valuation Models by Learning from Heterogeneous Data Sources

Author:

Bergadano Francesco,Bertilone Roberto,Paolotti Daniela,Ruffo Giancarlo

Abstract

In this paper we propose a data acquisition methodology, and a Machine Learning solution for the partially automated evaluation of real estate properties. The novelty and importance of the approach lies in two aspects: (1) when compared to Automated Valuation Models (AVMs) as available to real estate operators, it is highly adaptive and non-parametric, and integrates diverse data sources; (2) when compared to Machine Learning literature that has addressed real estate applications, it is more directly linked to the actual business processes of appraisal companies: in this context prices that are advertised online are normally not the most relevant source of information, while an appraisal document must be proposed by an expert and approved by a validator, possibly with the help of technological tools. We describe a case study using a set of 7988 appraisal documents for residential properties in Turin, Italy. Open data were also used, including location, nearby points of interest, comparable property prices, and the Italian revenue service area code. The observed mean error as measured on an independent test set was around 21 K€, for an average property value of about 190 K€. The AVM described here can help the stakeholders in this process (experts, appraisal company) to provide a reference price to be used by the expert, to allow the appraisal company to validate their evaluations in a faster and cheaper way, to help the expert in listing a set of comparable properties, that need to be included in the appraisal document.

Publisher

Penerbit UTM Press

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3