Overcoming Resistance to Anti-EGFR Therapy in Colorectal Cancer

Author:

Dienstmann Rodrigo1,Salazar Ramon1,Tabernero Josep1

Affiliation:

1. From the Sage Bionetworks, Fred Hutchinson Cancer Research Center, Seattle, WA; Medical Oncology Department, Vall d'Hebron University Hospital and Institute of Oncology, Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Medical Oncology, Translational Research Laboratory, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain.

Abstract

Our understanding of the genetic and nongenetic molecular alterations associated with anti–epidermal growth factor receptor (EGFR) therapy resistance in colorectal cancer (CRC) has markedly expanded in recent years. Mutations in RAS genes ( KRAS/ NRAS exons 2, 3, or 4) predict a lack of clinical benefit when anti-EGFR monoclonal antibodies (mAbs) are added to chemotherapy. Genetic events in additional nodes of the mitogen-activated protein kinase (MAPK)–phosphoinositide 3-kinase (PI3K) pathways that bypass EGFR signaling, such as BRAF or PIK3CA mutations or KRAS, ERBB2, or MET amplifications, also may confer resistance to cetuximab or panitumumab. Polymorphisms that block antibody binding as a result of EGFR extracellular domain mutations have been reported. Nongenetic mechanisms, including compensatory activation of receptor tyrosine kinases HER3 and MET, together with high expression of the ligands amphiregulin, transforming growth factor alpha heregulin, and hepatocyte growth factor in the tumor microenvironment also are thought to be involved in resistance. In one-third of the samples, more than one genetic event can be found, and nongenetic events most likely coexist with gene alterations. Furthermore, activation of a gene expression signature of epithelial-mesenchymal transition has been associated with reduced cellular dependence on EGFR signaling. Collectively, this body of work provides convincing evidence that the molecular heterogeneity of CRC plays an important role in the context of resistance to anti-EGFR therapy. Herein, we discuss how this knowledge has been translated into drug development strategies to overcome primary and acquired anti-EGFR resistance, with rational combinations of targeted agents in genomically selected populations, second-generation EGFR inhibitors, and other agents expected to boost the immune response at the tumor site.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3