Analysis of EGFR binding hotspots for design of new EGFR inhibitory biologics

Author:

Tydings Claiborne W.12ORCID,Singh Bhuminder3ORCID,Smith Adam W.4ORCID,Ledwitch Kaitlyn V.12ORCID,Brown Benjamin P.12ORCID,Lovly Christine M.56ORCID,Walker Allison S.17ORCID,Meiler Jens128ORCID

Affiliation:

1. Department of Chemistry Vanderbilt University Nashville Tennessee USA

2. Center for Structural Biology Vanderbilt University Nashville Tennessee USA

3. Department of Medicine – Division of Gastroenterology, Hepatology, and Nutrition Vanderbilt University Medical Center Nashville Tennessee USA

4. Department of Chemistry and Biochemistry Texas Tech University Lubbock Texas USA

5. Department of Medicine – Division of Hematology and Oncology Vanderbilt University Medical Center Nashville Tennessee USA

6. Vanderbilt‐Ingram Cancer Center Vanderbilt University Medical Center Nashville Tennessee USA

7. Department of Biological Sciences Vanderbilt University Nashville Tennessee USA

8. Institute for Drug Discovery Leipzig University Medical School Leipzig SAC Germany

Abstract

AbstractThe epidermal growth factor (EGF) receptor (EGFR) is activated by the binding of one of seven EGF‐like ligands to its ectodomain. Ligand binding results in EGFR dimerization and stabilization of the active receptor conformation subsequently leading to activation of downstream signaling. Aberrant activation of EGFR contributes to cancer progression through EGFR overexpression/amplification, modulation of its positive and negative regulators, and/or activating mutations within EGFR. EGFR targeted therapeutic antibodies prevent dimerization and interaction with endogenous ligands by binding the ectodomain of EGFR. However, these antibodies have had limited success in the clinic, partially due to EGFR ectodomain resistance mutations, and are only applicable to a subset of patients with EGFR‐driven cancers. These limitations suggest that alternative EGFR targeted biologics need to be explored for EGFR‐driven cancer therapy. To this end, we analyze the EGFR interfaces of known inhibitory biologics with determined structures in the context of endogenous ligands, using the Rosetta macromolecular modeling software to highlight the most important interactions on a per‐residue basis. We use this analysis to identify the structural determinants of EGFR targeted biologics. We suggest that commonly observed binding motifs serve as the basis for rational design of new EGFR targeted biologics, such as peptides, antibodies, and nanobodies.

Funder

National Science Foundation

National Institutes of Health

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3