Analisis Sentimen Layanan Sistem Informasi Akademik Mahasiswa Menggunakan Algoritma Naive Bayes

Author:

Hidayat Taupik,Cahyana Rinda,Julianto Indri Tri

Abstract

AISnet For Student adalah sebuah sistem informasi akademik yang dibangun oleh Institut Teknologi Garut untuk memberikan kemudahan kepada mahasiswa dalam menjalankan berbagai kegiatan administrasi akademik kampus secara online. Penelitian ini memiliki tujuan untuk melakukan analisis sentimen terhadap layanan akademik online di Institut Teknologi Garut dengan melibatkan mahasiswa sebagai subjek penelitian. Analisis sentimen ini akan dilakukan menggunakan Algoritma Naive Bayes untuk menggali pandangan dan pendapat mahasiswa terkait dengan layanan akademik tersebut. Penelitian ini dilakukan dengan tujuan untuk mengidentifikasi potensi masalah yang mungkin terjadi dalam layanan akademik online di Institut Teknologi Garut. Selain itu, penelitian ini juga bertujuan untuk memberikan rekomendasi yang dapat membantu dalam meningkatkan kualitas layanan tersebut. Penelitian menunjukkan bahwa mahasiswa memiliki sentimen positif terhadap layanan akademik pada kampus. Tetapi, ada beberapa masalah yang perlu diatasi, seperti masalah teknis dan kekurangan fitur dalam sistem tersebut. Solusi dalam mengatasi masalah tersebut yaitu dengan mengembangkan sistem yang user-friendly, meningkatkan kualitas jaringan, meningkatkan fitur sistem, melakukan pelatihan atau sosialisasi penggunaan sistem kepada mahasiswa, dan menerapkan teknologi dan inovasi terbaru dalam layanan sistem akademik mahasiswa online. Hasil Penelitian ini memiliki potensi untuk memberikan manfaat bagi lembaga pendidikan dengan cara membantu dalam perbaikan layanan akademik online yang lebih baik. Hasilnya diharapkan dapat meningkatkan kepuasan dan kualitas layanan yang diberikan kepada mahasiswa. Selain itu, penelitian ini juga dapat menjadi acuan atau referensi bagi penelitian-penelitian selanjutnya yang berkaitan dengan analisis sentimen di bidang akademik atau bidang lainnya. Dimana Algoritma Naive Bayes digunakan untuk menganalisis sentimen mahasiswa terhadap layanan akademik pada kampus Institut Teknologi Garut. Hasil akhir menunjukan bahwa sentimen negatif lebih besar ketimbang sentimen positif. Dimana sentimen negatif sebesar 54,75 % dan sentimen positif sebesar 45,24%, hal ini di karnakan pada aplikasi AISNet pengguna kebanyakan memberikan ulasan untuk update nya tidak real time berikut adalah hasil akhir dengan mendapatkan accuracy 80,06%, percission sebesar 83,11 dan recall 75,21.

Publisher

Institut Teknologi Garut

Reference21 articles.

1. M. Mauludin Rohman and S. Adinugroho, “Analisis Sentimen pada Ulasan Aplikasi Mobile JKN Menggunakan Metode Maximum Entropy dan Seleksi Fitur Gini Index Text,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 6, pp. 2646–2654, 2021.

2. F. Fathonah and A. Herliana, “Penerapan Text Mining Analisis Sentimen Mengenai Vaksin Covid - 19 Menggunakan Metode Naïve Bayes,” J. Sains dan Inform., vol. 7, no. 2, pp. 155–164, 2021, doi: 10.34128/jsi.v7i2.331.

3. A. K. Fauziyyah, “Analisis Sentimen Pandemi Covid19 Pada Streaming Twitter Dengan Text Mining Python,” J. Ilm. SINUS, vol. 18, no. 2, p. 31, 2020, doi: 10.30646/sinus.v18i2.491.

4. M. K. Insan, “Analisis Sentimen Aplikasi Brimo Pada Ulasan Pengguna Di Google Play Menggunakan Algoritma Naive Bayes,” J. Mhs. Tek. Inform., vol. 7, no. 1, pp. 478–483, 2023.

5. J. Aransay et al., “GitHub y Google Colaboratory para el desarrollo, comunicación y gestión de prácticas en los laboratorios de informática,” Actas las Jenui, vol. 7, p. 183, 2022.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3