Design, Molecular Docking and Molecular Dynamic Simulation of New Heterocyclic Derivatives as Potential Anticancer Agents

Author:

Abdulqader Dhiaa AliORCID,Mahdi Monther Faisal

Abstract

Background: Despite significant progress in the development of anticancer medications, obstacles such as drug resistance, poor efficacy, and excessive toxicity have significantly impacted the daily lives of cancer patients. Consequently, the search for highly selective, effective, and non-toxic molecules remains a major challenge for cancer researchers. Objective: To utilize a computer program for evaluating new benzothiophene derivatives to investigate how they influence the estrogen-related receptor-gamma (ERRγ) active sites as anticancer agents. Methods: The molecular docking method used the Cambridge Crystallographic Data Centre's (CCDC) Genetic Optimization for Ligand Docking (GOLD) tool. We used the Desmond modules of the Schrodinger 2023 to perform MDS on the derivative with the highest docking score. The Swiss ADME server then assessed our drugs' pharmacokinetic profile, which included how well they crossed the blood-brain barrier (BBB), bound to P-gp, and were bioavailable. Results: The compounds were docked with the ERRγ crystal structure (2GPV) to assess their binding affinity to active sites. One of them earned a high score (102.62), and six compounds had a higher binding energy than the gold standard medication, tamoxifen. The molecular dynamic simulation analysis found that compound 1 closely matched the ERRγ based on RMSD and RMSF data. After examining the ADME study of practically active substances, they follow Lipinski's laws and other pharmacokinetic features. Conclusions: These chemicals have the potential to act as precursors in the development of new anticancer medicines.

Publisher

Al-Rafidain University College

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3