Same-day Enterococcus qPCR results of recreational water quality at two Toronto beaches provide added public health protection and reduced beach days lost

Author:

Saleem Faizan,Schellhorn Herb E.,Simhon Albert,Edge Thomas A.ORCID

Abstract

Abstract Objectives We evaluated the potential impacts from using a rapid same-day quantitative polymerase chain reaction (qPCR) monitoring method for beach posting outcomes at two Toronto beaches. Methods In total, 228 water samples were collected at Marie Curtis Park East and Sunnyside Beaches over the 2021 summer season. Water samples were processed using the USEPA 1609.1 Enterococcus qPCR-based method. Escherichia coli (E. coli) culture data and daily beach posting decisions were obtained from Toronto Public Health. Results No significant correlation was observed between previous-day and same-day (retrospective) E. coli enumeration results at any Sunnyside Beach transect, and only relatively low (R = 0.41–0.56) or no significant correlation was observed at sampling transects for Marie Curtis Park East Beach. Comparing our same-day Enterococcus qPCR data to Toronto’s 2-day E. coli geometric mean beach posting decisions, we noted the need for additional postings for 1 (2%) and 3 (8%) missed health-risk days at Sunnyside and Marie Curtis Park East Beaches, respectively. The qPCR data also pointed to incorrect postings for 12 (31%) and 6 (16%) lost beach days at Sunnyside and Marie Curtis Park East Beaches, respectively. Conclusion Application of a rapid Enterococcus qPCR method at two Toronto beaches revealed 5% of beach posting decisions were false negatives that missed health-risk days, while 23% of decisions were false positives resulting in lost beach days. Deployment of the rapid same-day qPCR method offers the potential to reduce both health risks and unnecessary beach postings.

Funder

Government of Ontario

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3