Extracting functionally accurate context-specific models of Atlantic salmon metabolism

Author:

Molversmyr HåvardORCID,Øyås Ove,Rotnes FilipORCID,Vik Jon OlavORCID

Abstract

AbstractConstraint-based models (CBMs) are used to study metabolic network structure and function in organisms ranging from microbes to multicellular eukaryotes. Published CBMs are usually generic rather than context-specific, meaning that they do not capture differences in reaction activities, which, in turn, determine metabolic capabilities, between cell types, tissues, environments, or other conditions. Only a subset of a CBM’s metabolic reactions and capabilities are likely to be active in any given context, and several methods have therefore been developed to extract context-specific models from generic CBMs through integration of omics data. We tested the ability of six model extraction methods (MEMs) to create functionally accurate context-specific models of Atlantic salmon using a generic CBM (SALARECON) and liver transcriptomics data from contexts differing in water salinity (life stage) and dietary lipids. Three MEMs (iMAT, INIT, and GIMME) outperformed the others in terms of functional accuracy, which we defined as the extracted models’ ability to perform context-specific metabolic tasks inferred directly from the data, and one MEM (GIMME) was faster than the others. Context-specific versions of SALARECON consistently outperformed the generic version, showing that context-specific modeling better captures salmon metabolism. Thus, we demonstrate that results from human studies also hold for a non-mammalian animal and major livestock species.

Funder

Norges Forskningsråd

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Drug Discovery,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation

Reference58 articles.

1. Nielsen, J. Systems biology of metabolism. Annu. Rev. Biochem. 86, 245–275 (2017).

2. Heirendt, L. et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nat. Protoc. 14, 639–702 (2019).

3. Fang, X., Lloyd, C. J. & Palsson, B. O. Reconstructing organisms in silico: genome-scale models and their emerging applications. Nat. Rev. Microbiol. 1–13 http://www.nature.com/articles/s41579-020-00440-4 (2020).

4. Norsigian, C. J. et al. BiGG models 2020: multi-strain genome-scale models and expansion across the phylogenetic tree. Nucleic Acids Res. 48, D402–D406 (2020).

5. Moretti, S., Tran, V. D. T., Mehl, F., Ibberson, M. & Pagni, M. MetaNetX/MNXref: unified namespace for metabolites and biochemical reactions in the context of metabolic models. Nucleic Acids Res. 49, D570–D574 (2021).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3