Mediterranean Sea heatwaves jeopardize greater amberjack’s (Seriola dumerili) aquaculture productivity through impacts on the fish microbiota

Author:

Sánchez-Cueto Pablo1,Stavrakidis-Zachou Orestis2,Clos-Garcia Marc3ORCID,Bosch Montse1,Papandroulakis Nikos2,Lladó Salvador4ORCID

Affiliation:

1. LEITAT Technological Center , 08225 Terrassa, Spain

2. Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research , 71500 Heraklion, Greece

3. Clarivate Analytics , Barcelona, Spain

4. Department of Genetics, Microbiology and Statistics, University of Barcelona , Av. Diagonal 643, E-08028 Barcelona, Spain

Abstract

Abstract Climate change is dramatically increasing the frequency and severity of marine heatwaves (MHWs) in the Mediterranean basin, strongly affecting marine food production systems. However, how it will shape the ecology of aquaculture systems, and the cascading effects on productivity, is still a major knowledge gap. The present work aims to increase our understanding of future impacts, caused by raising water temperatures, on the interaction between water and fish microbiotas, and consequential effects upon fish growth. Thus, the bacterial communities present in the water tanks, and mucosal tissues (skin, gills and gut), of greater amberjack farmed in recirculatory aquaculture systems (RAS), at three different temperatures (24, 29 and 33 °C), were characterized in a longitudinal study. The greater amberjack (Seriola dumerili) is a teleost species with high potential for EU aquaculture diversification due to its fast growth, excellent flesh quality and global market. We show that higher water temperatures disrupt the greater amberjack’s microbiota. Our results demonstrate the causal mediation exerted by this bacterial community shifts on the reduction of fish growth. The abundance of members of the Pseudoalteromonas is positively correlated with fish performance, whereas members of the Psychrobacter, Chryseomicrobium, Paracoccus and Enterovibrio are suggested as biomarkers for dysbiosis, at higher water temperatures. Hence, opening new evidence-based avenues for the development of targeted microbiota-based biotechnological tools, designed to increase the resilience and adaptation to climate change of the Mediterranean aquaculture industry.

Funder

European Commission

Publisher

Oxford University Press (OUP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3