Highly-resolved interannual phytoplankton community dynamics of the coastal Northwest Atlantic

Author:

Robicheau Brent M.ORCID,Tolman JenniferORCID,Bertrand Erin M.ORCID,LaRoche JulieORCID

Abstract

AbstractMicrobial observatories can track phytoplankton at frequencies that resolve monthly, seasonal, and multiyear trends in environmental change from short-lived events. Using 4-years of weekly flow cytometry along with chloroplast and cyanobacterial 16S rRNA gene sequence data from a time-series station in the coastal Northwest Atlantic (Bedford Basin, Nova Scotia, Canada), we analyzed temporal observations for globally-relevant genera (e.g., Bolidomonas, Teleaulax, Minidiscus, Chaetoceros, Synechococcus, and Phaeocystis) in an oceanic region that has been recognized as a likely hotspot for phytoplankton diversity. Contemporaneous Scotian Shelf data also collected during our study established that the major phytoplankton within the Bedford Basin were important in the Scotian Shelf during spring and fall, therefore pointing to their broader significance within the coastal Northwest Atlantic (NWA). Temporal trends revealed a subset of indicator taxa along with their DNA signatures (e.g., Eutreptiella and Synechococcus), whose distribution patterns make them essential for timely detection of environmentally-driven shifts in the NWA. High-resolution sampling was key to identifying important community shifts towards smaller phytoplankton under anomalous environmental conditions, while further providing a detailed molecular view of community compositions underpinning general phytoplankton succession within the coastal NWA. Our study demonstrates the importance of accessible coastal time-series sites where high-frequency DNA sampling allows for the detection of shifting baselines in phytoplankton communities.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3