A study of the influence of iron, phosphate, and silicate in Si uptake by two Synechococcus strains

Author:

Godrant Aurélie,Leynaert Aude,Moriceau Brivaela

Abstract

We investigated the influence of iron (Fe), phosphate (PO4), and silicic acid [Si(OH)4] concentrations on Si uptake rate by two strains of Synechococcus. Growth rates, cellular biogenic silica (bSi), and silicon uptake rates were measured and compared. Both strains showed significant Si cellular contents varying from 0.04 47 fmol cell−1 to a maximum of 47 fmol cell−1, confirming that the presence of Si in Synechococcus is a common feature of the genus but with strain specificity. Maximum Si cell contents were measured when Fe and P co-limited RCC 2380 growth (47 fmol Si cell−1) and under -Fe-Si limitations (6.6 fmol Si cell−1) for the second strain RCC 1084. Unambiguously, all conditions involving P limitations induced an increase in the Si uptake by the two Synechococcus. Moreover, RCC 1084 showed a relationship between Si cellular quota and growth rate. However, both strains also showed a clear impact of Fe concentrations on their Si uptake: Si quotas increased 1) under Fe limitation even without P co-limitation and 2) under simple Fe limitation for RCC 1084 and with Si co-limitations for RCC 2380. Both strains exhibited a behavior that has never been seen before with changing Si(OH)4: concentrations of 150 µM of Si(OH)4 negatively impacted RCC 2380 growth over 10 generations. Conversely, RCC 1084 was limited when Si(OH)4 concentrations dropped to 20 µmol L−1. Maximum Synechococcus Si uptake rates normalized to the organisms’ size (7.46 fmol µm−3 day−1) are comparable to those measured for diatoms and rhizarians. From our data, and using all the data available on Synechococcus Si content and Si uptake rates, their average concentrations for each Longhurst province, and existing descriptions of the dominant nutrient limitations and Synechococcus strain specificity, we estimated at the global scale that the annual bSi stock contained in Synechococcus is 0.87 ± 0.61 Tmol Si, i.e., around a quarter of the bSi stock due to diatoms. We also estimated that the global Si production due to Synechococcus could average 38 ± 27 Tmol Si year−1, which is roughly 17% of the total global annual Si production.

Funder

Agence Nationale de la Recherche

Publisher

Frontiers Media SA

Reference69 articles.

1. Significant silicon accumulation by marine picocyanobacteria;Baines;Nat. Geosci.,2012

2. Global gradients in species richness of marine plankton functional groups;Benedetti;J. Plankton Res.,2023

3. The significance of giant phaeodarians (Rhizaria) to biogenic silica export in the california current ecosystem;Biard;Glob. Biogeochem. Cycles,2018

4. III. 5. Trace elements and their isotopes;Boutorh;CRUISE REPORT,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3