Weather stressors correlate with Escherichia coli and Salmonella enterica persister formation rates in the phyllosphere: a mathematical modeling study

Author:

Brandl Maria T.ORCID,Ivanek Renata,Zekaj Nerion,Belias Alexandra,Wiedmann MartinORCID,Suslow Trevor V.,Allende AnaORCID,Munther Daniel S.ORCID

Abstract

AbstractEnteric pathogens can enter a persister state in which they survive exposure to antibiotics and physicochemical stresses. Subpopulations of such phenotypic dormant variants have been detected in vivo and in planta in the laboratory, but their formation in the natural environment remains largely unexplored. We applied a mathematical model predicting the switch rate to persister cell in the phyllosphere to identify weather-related stressors associated with E. coli and S. enterica persister formation on plants based on their population dynamics in published field studies from the USA and Spain. Model outputs accurately depicted the bi-phasic decay of bacterial population sizes measured in the lettuce and spinach phyllosphere in these studies. Predicted E. coli persister switch rate on leaves was positively and negatively correlated with solar radiation intensity and wind velocity, respectively. Likewise, predicted S. enterica persister switch rate correlated positively with solar radiation intensity; however, a negative correlation was observed with air temperature, relative humidity, and dew point, factors involved in water deposition onto the phylloplane. These findings suggest that specific environmental factors may enrich for dormant bacterial cells on plants. Our model quantifiably links persister cell subpopulations in the plant habitat with broader physical conditions, spanning processes at different granular scales.

Funder

Center for Produce Safety

United States Department of Agriculture | Agricultural Research Service

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3