Nitrogen and sulfur metabolisms encoded in prokaryotic communities associated with sea ice algae

Author:

Bellas Christopher M.ORCID,Campbell Karley,Tranter MartynORCID,Sánchez-Baracaldo PatriciaORCID

Abstract

AbstractSea ice habitats harbour seasonally abundant microalgal communities, which can be highly productive in the spring when the availability of light increases. An active, bloom-associated prokaryotic community relies on these microalgae for their organic carbon requirements, however an analysis of the encoded metabolic pathways within them is lacking. Hence, our understanding of biogeochemical cycling within sea ice remains incomplete. Here, we generated metagenomic assembled genomes from the bottom of first-year sea ice in northwestern Hudson Bay, during a spring diatom bloom. We show that the prokaryotic community had the metabolic potential to degrade algal derived dimethylsulphoniopropionate and oxidise sulfur. Facultative anaerobic metabolisms, specifically, dissimilatory nitrate reduction and denitrification were also prevalent here, suggesting some sea ice prokaryotes are metabolically capable of adapting to fluctuating oxygen levels during algal bloom conditions. Such denitrification could be an important loss of fixed-N2 in the changing Arctic marine system.

Funder

Royal Society

Austrian Science Fund

RCUK | Natural Environment Research Council

Norges Forskningsråd

Publisher

Oxford University Press (OUP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3