Microalgal community structure and primary production in Arctic and Antarctic sea ice: A synthesis

Author:

van Leeuwe Maria A.1,Tedesco Letizia2,Arrigo Kevin R.3,Assmy Philipp4,Campbell Karley5,Meiners Klaus M.678,Rintala Janne-Markus9,Selz Virginia3,Thomas David N.28,Stefels Jacqueline1

Affiliation:

1. University of Groningen, Groningen Institute for Evolutionary Life Sciences, Groningen, NL

2. Finnish Environment Institute (SYKE), Marine Research Centre, Helsinki, FI

3. Earth System Science Department, Stanford University, Stanford CA, US

4. Norwegian Polar Institute, Fram Centre, Tromsø, NO

5. University of Manitoba, Centre for Earth Observation Science, Winnipeg, CA

6. Australian Antarctic Division, Department of the Environment and Energy, Kingston, Tasmania, AU

7. Australia and Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Tasmania, AU

8. School of Ocean Sciences, Bangor University, Anglesey, UK

9. Department Environmental Sciences, University of Helsinki, FI

Abstract

Sea ice is one the largest biomes on earth, yet it is poorly described by biogeochemical and climate models. In this paper, published and unpublished data on sympagic (ice-associated) algal biodiversity and productivity have been compiled from more than 300 sea-ice cores and organized into a systematic framework. Significant patterns in microalgal community structure emerged from this framework. Autotrophic flagellates characterize surface communities, interior communities consist of mixed microalgal populations and pennate diatoms dominate bottom communities. There is overlap between landfast and pack-ice communities, which supports the hypothesis that sympagic microalgae originate from the pelagic environment. Distribution in the Arctic is sometimes quite different compared to the Antarctic. This difference may be related to the time of sampling or lack of dedicated studies. Seasonality has a significant impact on species distribution, with a potentially greater role for flagellates and centric diatoms in early spring. The role of sea-ice algae in seeding pelagic blooms remains uncertain. Photosynthesis in sea ice is mainly controlled by environmental factors on a small scale and therefore cannot be linked to specific ice types. Overall, sea-ice communities show a high capacity for photoacclimation but low maximum productivity compared to pelagic phytoplankton. Low carbon assimilation rates probably result from adaptation to extreme conditions of reduced light and temperature in winter. We hypothesize that in the near future, bottom communities will develop earlier in the season and develop more biomass over a shorter period of time as light penetration increases due to the thinning of sea ice. The Arctic is already witnessing changes. The shift forward in time of the algal bloom can result in a mismatch in trophic relations, but the biogeochemical consequences are still hard to predict. With this paper we provide a number of parameters required to improve the reliability of sea-ice biogeochemical models.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3