Author:
Kapsenberg Lydia,Kelley Amanda L.,Shaw Emily C.,Martz Todd R.,Hofmann Gretchen E.
Abstract
Abstract
Understanding how declining seawater pH caused by anthropogenic carbon emissions, or oceanacidification, impacts Southern Ocean biota is limited by a paucity of pH time-series. Here,we present the first high-frequency in-situ pH time-series in near-shore Antarctica fromspring to winter under annual sea ice. Observations from autonomous pH sensors revealed aseasonal increase of 0.3 pH units. The summer season was marked by an increase in temporalpH variability relative to spring and early winter, matching coastal pH variability observedat lower latitudes. Using our data, simulations of ocean acidification show a future periodof deleterious wintertime pH levels potentially expanding to 7–11 months annually by 2100.Given the presence of (sub)seasonal pH variability, Antarctica marine species have anexisting physiological tolerance of temporal pH change that may influence adaptation tofuture acidification. Yet, pH-induced ecosystem changes remain difficult to characterize inthe absence of sufficient physiological data on present-day tolerances. It is thereforeessential to incorporate natural and projected temporal pH variability in the design ofexperiments intended to study ocean acidification biology.
Publisher
Springer Science and Business Media LLC
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献