Abstract
AbstractThe CE phase is an extraordinary phase exhibiting the simultaneous spin, charge, and orbital ordering due to strong electron correlation. It is an ideal platform to investigate the role of the multiple orderings in the phase transitions and discover emergent properties. Here, we use a cryogenic high-field magnetic force microscope to image the phase transitions and properties of the CE phase in a Pr0.5Ca0.5MnO3 thin film. In a high magnetic field, we observed a clear suppression of magnetic susceptibility at the charge-ordering insulator transition temperature (TCOI), whereas, at the Néel temperature (TN), no significant change is observed. This observation favors the scenario of strong antiferromagnetic correlation developed below TCOI but raises questions about the Zener polaron paramagnetic phase picture. Besides, we discoverd a phase-separated surface state in the CE phase regime. Ferromagnetic phase domains residing at the surface already exist in zero magnetic field and show ultra-high magnetic anisotropy. Our results provide microscopic insights into the unconventional spin- and charge-ordering transitions and revealed essential attributes of the CE phase, highlighting unusual behaviors when multiple electronic orderings are involved.
Funder
National Key Research and Development Program of China
Japan Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献