Affiliation:
1. Max-Planck-Institut für neurologische Forschung, Cologne, F.R.G. * National Institutes of Mental Health, Bethesda, Maryland, U.S.A.; Accepted November 1986
Abstract
An analytical method based on Taylor expansions was developed to analyze errors caused by tissue heterogeneity in dynamic positron emission tomography (PET) measurements. Some general rules concerning the effect of parameter variances and covariances were derived. The method was further applied to various compartmental models currently used for measurement of blood flow, capillary permeability, glucose metabolism, and tracer binding. Blood flow and capillary permeability are shown to be generally underestimated in heterogenous tissue, the underestimation being more severe for slowly decaying, constant or increasing input functions rather than for bolus input, and increasing with measurement time. Typical errors caused by the heterogeneity due to insufficient separation between gray and white matter by a PET scanner with full width at half-maximum (FWHM)= 5 to 10 mm resolution range between–0.9 and–6% in dynamic CBF measurements with intravenous (i. v.) bolus injection of 15O-water or inhalation of 18F-fluoromethane and total measurement times of6 or 10 min, respectively. Binding or metabolic rates determined with tracers that are essentially trapped in tissue (e.g., FDG for measurement of cerebral glucose metabolism) are only slightly overestimated (0.5–3.0%) at typical measurement times and are essentially independent of the shape of the input function. The error increases considerably if tracer accumulation is very slow, however, or if short measurement times [<5/(k2 + k3)] are used. Some rate constants are also subject to larger errors.
Subject
Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献