The Deoxyglucose Method in the Ferret Brain. I. Methodological Considerations

Author:

Redies C.1,Diksic M.1

Affiliation:

1. Cone Laboratory, Montreal Neurological Institute, and Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada

Abstract

In the brain of the anesthetized ferret, the 2-deoxyglucose (2-DG) transfer rate constants required to determine cerebral glucose utilization by the deoxyglucose method were calculated from regional gray matter time-radioactivity curves measured for 180 min after tracer injection. Results suggest that loss of metabolized tracer from brain occurs at a rate of about 1%/min for the first 180 min after injection if the rate constant of the rate-limiting step for loss of metabolized tracer ( k*4) represents a first-order kinetic process. A simulation experiment shows that, whether k*4 is assumed to be 0 or 0.01 min−1, has a negligible influence on glucose utilization rates obtained in conventional 45 min autoradiographic experiments provided that the entire analysis, including lumped constant determination, is carried out in a consistent way. The 2-DG lumped constant for k*4 = 0 is 0.54, and 0.68 for k*4 = 0.01 min−1.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3