The Metabolic Effects of Mild Hypothermia on Global Cerebral Ischemia and Recirculation in the Cat: Comparison to Normothermia and Hyperthermia

Author:

Chopp Michael1,Knight Robert1,Tidwell Carl D.,Helpern J. A.,Brown Eileen2,Welch K. M. A.

Affiliation:

1. Department of Physics, Oakland University, Rochester

2. Department of Biostatistics and Research Epidemiology, Henry Ford Hospital, Detroit, Michigan, U.S.A.

Abstract

The metabolic effects of graded whole body hypothermia on complete global cerebral ischemia and recirculation was investigated in the cat. Hypothermia was induced to one of three levels prior to ischemia; T = 26.8° ± 0.5° (n = 4), T = 32.1° ± 0.2°C (n = 5), and T = 34.6° ± 0.3°C (n = 6), and maintained constant throughout 16 min of ischemia and 1.5–2 h of recirculation. Intracellular cerebral pH and relative concentrations of high-energy phosphate metabolites were continuously monitored, using in vivo31P nuclear magnetic resonance (NMR) spectroscopy. Except for the first 4 min of ischemia, no significant differences were detected in the response of adenylate intensities and intracellular pH to ischemia and recirculation between the hypothermic groups. The three hypothermic groups were then pooled into one group, and the data compared to previously published data from a normothermic group, T = 38.4° ± 0.6°C (n = 14), and a hyperthermic group, T = 40.6° ± 0.2°C (n = 9), subjected to the identical ischemic and NMR measurement protocols. The hypothermic animals exhibited a statistically significant reduction of cerebral intracellular acidosis, both during ischemia and recirculation, as well as a more rapid return of adenylate intensities during recirculation, compared to the normothermic or hyperthermic groups. The data thus suggest that mild hypothermia has an ameliorative affect on brain energy metabolism and intracellular pH under conditions of complete global cerebral ischemia and recirculation.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3