Effects of profound hypothermia and circulatory arrest on cerebral oxygen metabolism and cerebrospinal fluid electrolyte composition in dogs

Author:

Bering Edgar A.

Abstract

✓ Cerebral oxygen metabolism was studied in the dog at brain temperatures ranging from 37° to 8°C. As brain temperature decreased, the cerebral oxygen metabolism (CMRO2) decreased following the Arrhenius equation. The natural logarithm of the CMRO2 was a linear function of the reciprocal of the absolute (K) brain temperature. Oxygen metabolism, although much decreased, continued at very low brain temperatures. The CSF composition was unchanged after 1 hour at brain temperatures down to 10°C. Circulatory arrest for tolerable periods and longer caused changes only in the CSF potassium concentration. The interval between the onset of circulatory arrest and the beginning of the CSF K concentration increased with decreasing temperature and the rate of CSF K increase was increasingly slower at lower temperatures. At all temperatures the rate of CSF K changed gradually increased with time. The interval before the CSF K started to increase was dependent upon the amount of O2 available in the brain and the length of this interval was inversely proportional to the CMRO2. The amount of CSF K concentration was not clearly related to the tolerable periods of circulatory arrest, but at normal temperatures an obviously increased CSF K following a period of acute cerebral anoxia without CSF hemorrhage may indicate brain damage.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3