Swelling, Acidosis, and Irreversible Damage of Glial Cells from Exposure to Arachidonic Acid in vitro

Author:

Staub F.,Winkler A.,Peters J.,Kempski O.1,Kachel V.2,Baethmann A.

Affiliation:

1. Institute for Neurosurgical Pathophysiology, Johannes Gutenberg University, Mainz

2. Max Planck Institute for Biochemistry, Martinsried, Germany

Abstract

Swelling and damage of C6 glioma cells and of primary cultured astrocytes were analyzed in vitro during incubation with arachidonic acid (AA; 20:4). The cells were suspended in a physiological medium supplemented with AA at concentrations of 0.001–1.0 m M. Cell swelling was quantified by flow cytometry with hydrodynamic focusing. Flow cytometry was also utilized for assessment of cell viability by exclusion of the fluorescent dye propidium iodide and for measurement of the intracellular pH (pHi) by 2′,7′-bis-(2-carboxyethyl)−5(and −6)carboxyfluorescein. Administration of AA caused an immediate dose-dependent swelling of C6 glioma cells, even at a concentration of 0.01 m M. At this level cell volume increased within 20 min to 105.0% of control, at 0.1 m M to 111.0%, while at 1.0 m M to 123.7%. Following a phase of rapid cell volume increase, swelling leveled off during the subsequent observation period of 70 min. Viability of the C6 glioma cells was 90% under control conditions. It remained unchanged after raising AA concentrations to 0.1 m M. At 0.5 m M, however, cell viability fell to 72.8%, and at 1.0 m M to 32.7%. pHiof the glioma cells was 7.3 under control conditions. In parallel with the early swelling phase, AA led to a dose-dependent decrease of the intracellular pH and an elevated lactate production of the cells. During incubation with 0.1 m M AA, pHidecreased to 7.06 after 5 min, but recovered to normal subsequently. In addition, swelling-inducing properties of linoleic (18:2) or stearic (18:0) acid were analyzed for evaluation of the specificity of glial swelling induced by AA. Whereas stearic acid (0.1 m M) failed to induce a swelling response, linoleic acid (0.1 m M) was found to be effective. The volume increase of the glial cells, however, was only half of that found during exposure to AA at the same concentration. Further, glial swelling from AA or linoleic acid was completely inhibited by the aminosteroid U-74389F, an antagonist of lipid peroxidation. Finally, omission of Na+ions in the suspension medium with replacement by choline led also to inhibition of the cell volume increase by AA. Experiments using astrocytes from primary culture confirmed the swelling-inducing properties of AA at a quantitative level, whereas vulnerability of the cells to AA was increased. The present results demonstrate an important role of AA in cytotoxic swelling and irreversible damage of glial cells at concentrations that occur in vivo in cerebral ischemia or trauma. The damaging potential of AA might be enhanced by a concurrently evolving intracellular acidosis, stimulating the formation of oxygen-derived free radicals and lipid peroxidation.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3