Effects of Calcium Entry Blocker Emopamil on Postischemic Energy Metabolism of the Isolated Perfused Rat Brain

Author:

Bielenberg Gerhard Wilhelm1,Haubruck Heinz1,Krieglstein Josef1

Affiliation:

1. Institut für Pharmakologie und Toxikologie im Fachbereich Pharmazie und Lebensmittelchemie der Philipps-Universität, Marburg, F.R.G.

Abstract

The effects of emopamil on postischemic energy metabolism and electroencephalographic (EEG) recovery were investigated in the isolated rat brain perfused at either constant pressure or, alternatively, at constant flow rate. Flow rate and perfusion pressure were monitored continuously. The brains were perfused with a fluorocarbon emulsion for 30 min, and after 30 min of ischemia, perfusion was reinstituted for 5, 30, or 60 min. Global cerebral perfusion rate was increased by emopamil throughout the perfusion period and, accordingly, in brains perfused at a constant flow rate, perfusion pressure was reduced by the drug. At constant pressure perfusion, after 5 min after ischemia, cortical levels of creatine-phosphate, adenosine triphosphate (ATR), glucose, glucose-6-phosphate, and fructose-6-phosphate were higher in emopamil-treated brains than in controls, although the levels of adenosine diphosphate (ADP) and adenosine monophosphate (AMP) were reduced. When brains were perfused at constant flow rate, however, emopamil exhibited no effect on brain energy metabolism in the early reperfusion period. Postischemic restoration of high-energy phosphates proved to depend on the flow rate used. After 30 min of postischemic reperfusion, cortical levels of lactate were lower in emopamil-treated brains compared to controls at both constant pressure and constant volume perfusion. Postischemic lactate levels were independent of flow rate and were also reduced when emopamil was only present during reperfusion. The postischemic restoration of cortical EEG activity was improved by the calcium entry blocker. The results suggest that the restoration of high-energy phosphates during the early postischemic recovery can be mainly attributed to the vascular effect of emopamil, whereas the lower lactate levels are caused by a direct action of the calcium entry blocker on brain parenchyma.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3