Affiliation:
1. Institut für Pharmakologie und Toxikologie im Fachbereich Pharmazie und Lebensmittelchemie der Philipps-Universität, Marburg, F.R.G.
Abstract
Male Wistar rats were subjected to forebrain ischemia of 10 min duration by clamping both common carotid arteries and simultaneously lowering systemic blood pressure to 40 mm Hg by exsanguination. Recovery was achieved by removing the arterial clamps and reinfusing the blood. Cortical levels of high-energy phosphates and glycolytic substrates were determined enzymatically. Naftidrofuryl (10 or 20 mg/kg i.p.) or ketamine (5 mg/kg i.v.) were applied 30 min prior to the induction of ischemia. S(-)-Emopamil (4 mg/kg) or nimodipine (50 μg/kg) were administered by intravenous infusion over 30 min. Nimodipine and emopamil increased the blood glucose level and lowered preischemic blood pressure. Under control conditions, a tendency toward a higher cortical glucose level was observed in treated brains. Brain energy stores were exhausted after ischemia in control and treated animals to the same degree. Lactate levels, however, were higher in emopamil-treated animals. This effect was attributed to the elevated pre-ischemic glucose levels. During the early recovery period, the restoration of high-energy phosphates was accelerated by both calcium entry blockers. Nimodipine and emopamil increased the levels of glucose and glucoses-phosphate in the early postischemic period. Naftidrofuryl (10 mg/kg) increased the level of creatine-phosphate and ATP after 2 min of recovery. Naftidrofuryl (20 mg/kg) exerted no effect on cerebral energy metabolism, but considerably reduced postischemic blood pressure (possibly thereby masking its ameliorative action). Ketamine accelerated the postischemic restoration of high-energy phosphates. In the conscious rat, local cerebral blood flow (LCBF) was determined with the 14C-iodoantipyrine technique following emopamil (20 mg/kg s.c.) or naftidrofuryl (10 mg/kg i.v.) application. Both compounds increased LCBF values in the majority of grey matter structures. It was concluded that the cerebroprotective agents investigated share an accelerating effect on the postischemic restoration of high-energy phosphates in cerebral cortex.
Subject
Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献