Abstract
AbstractTotal water storage anomalies (TWSAs) describe the variations of the terrestrial water cycle, which is essential for understanding our climate system. This study proposes a self-supervised data assimilation model with a new loss function to provide global TWSAs with a spatial resolution of 0.5°. The model combines hydrological simulations as well as measurements from the Gravity Recovery and Climate Experiment (GRACE) and its follow-on (GRACE-FO) satellite missions. The efficiency of the high-resolution information is proved by closing the water balance equation in small basins while preserving large-scale accuracy inherited from the GRACE(-FO) measurements. The product contributes to monitoring natural hazards locally and shows potential for better understanding the impacts of natural and anthropogenic activities on the water cycle. We anticipate our approach to be generally applicable to other TWSA data sources and the resulting products to be valuable for the geoscience community and society.
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献