Suppression of obesity by melatonin through increasing energy expenditure and accelerating lipolysis in mice fed a high-fat diet

Author:

Xu LiangORCID,Li Dandan,Li Haoran,Zhang Ouyang,Huang Yaxin,Shao Hengrong,Wang Yajiao,Cai Suili,Zhu Yuqin,Jin ShengnanORCID,Ding ChunmingORCID

Abstract

Abstract Backgrounds/objectives Melatonin promotes brown adipose tissue (BAT) activity, leading to body mass reduction and energy expenditure. However, the mechanisms governing these beneficial effects are not well-established. This study aimed to assess the effects of (1) melatonin on BAT and energy metabolism, and (2) fibroblast growth factor 21 (FGF21) in BAT-mediated thermogenesis. Methods Male C57BL/6 J mice received a high-fat diet (HFD) or normal chow, accompanied by intraperitoneal injection of 20 mg/kg melatonin for 12 weeks. FGF21−/− mice consumed an HFD with or without melatonin for 8 weeks. Results Melatonin attenuated weight gain, insulin resistance, adipocyte hypertrophy, inflammation, and hepatic steatosis induced by the HFD and increased energy expenditure. Furthermore, melatonin improved cold tolerance by increasing BAT uncoupling protein 1 (UCP1) expression and producing heat. Notably, melatonin resulted in a shift in energy metabolism favouring the utilization of fat, and it increased FGF21 in circulating and metabolic tissues and skeletal muscle phosphorylation of AMP-activated protein kinase. However, melatonin did not protect against obesity, insulin resistance, and energy expenditure in HFD-fed FGF21−/− mice. Conclusions Melatonin suppressed obesity and insulin resistance resulting from the HFD by enhancing BAT activity and energy expenditure, and these effects were dependent on FGF21.

Publisher

Springer Science and Business Media LLC

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3