Abstract
AbstractSome climate variables do not show the same response to declining atmospheric CO2 concentrations as before the preceding increase. A comprehensive understanding of this hysteresis effect and its regional patterns is, however, lacking. Here we use an Earth system model with an idealized CO2 removal scenario to show that surface temperature and precipitation exhibit globally widespread irreversible changes over a timespan of centuries. To explore the climate hysteresis and reversibility on a regional scale, we develop a quantification method that visualizes their spatial patterns. Our experiments project that 89% and 58% of the global area experiences irreversible changes in surface temperature and precipitation, respectively. Strong irreversible response of surface temperature is found in the Southern Ocean, Arctic and North Atlantic Ocean and of precipitation in the tropical Pacific, global monsoon regions and the Himalayas. These global hotspots of irreversible changes can indicate elevated risks of negative impacts on developing countries.
Funder
Yonsei University
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
Social Sciences (miscellaneous),Environmental Science (miscellaneous)
Reference52 articles.
1. Osman, M. B. et al. Globally resolved surface temperatures since the Last Glacial Maximum. Nature 599, 239–244 (2021).
2. Keller, D. P. et al. The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): rationale and experimental protocol for CMIP6. Geosci. Model Dev. 11, 1133–1160 (2018).
3. Rahmstorf, S. et al. Thermohaline circulation hysteresis: a model intercomparison. Geophys. Res. Lett. 32, 1–5 (2005).
4. Hawkins, E. et al. Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport. Geophys. Res. Lett. 38, L10605 (2011).
5. An, S.-I., Kim, H.-J. & Kim, S.-K. Rate-dependent hysteresis of the Atlantic Meridional Overturning Circulation system and its asymmetric loop. Geophys. Res. Lett. 48, e2020GL090132 (2021).
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献