Advancing electrodeionization with conductive ionomer binders that immobilize ion-exchange resin particles into porous wafer substrates

Author:

Palakkal Varada MenonORCID,Valentino LaurenORCID,Lei QiORCID,Kole Subarna,Lin Yupo J.ORCID,Arges Christopher G.ORCID

Abstract

AbstractElectrodeionization (EDI) is an electrically driven separations technology that employs ion-exchange membranes and resin particles. Deionization occurs under the influence of an applied electric field, facilitating continuous regeneration of the resins and supplementing ionic conductivity. While EDI is commercially used for ultrapure water production, material innovation is required for improving desalination performance and energy efficiency for treating alternative water supplies. This work reports a new class of ion-exchange resin-wafers (RWs) fabricated with ion-conductive binders that exhibit exceptional ionic conductivities—a 3–5-fold improvement over conventional RWs that contain a non-ionic polyethylene binder. Incorporation into an EDI stack (RW-EDI) resulted in an increased desalination rate and reduced energy expenditure compared to the conventional RWs. The water-splitting phenomenon was also investigated in the RW in an external experimental setup in this work. Overall, this work demonstrates that ohmic resistances can be substantially curtailed with ionomer binder RWs at dilute salt concentrations.

Funder

DOE | LDRD | Argonne National Laboratory

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,Waste Management and Disposal,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3