Reducing Ohmic Resistances in Membrane Capacitive Deionization Using Micropatterned Ion‐Exchange Membranes, Ionomer Infiltrated Electrodes, and Ionomer‐Coated Nylon Meshes

Author:

Hasan Mahmudul1ORCID,Shrimant Bharat1ORCID,Waters Colton Burke1,Gorski Christopher A.2ORCID,Arges Christopher G.13ORCID

Affiliation:

1. Department of Chemical Engineering Pennsylvania State University University Park PA 16802 USA

2. Department of Civil and Environmental Engineering Pennsylvania State University University Park PA 16802 USA

3. Transportation and Power Systems Division Argonne National Laboratory Lemont IL 60439 USA

Abstract

Membrane capacitive deionization (MCDI) is an emerging water desalination platform that is compact, electrified, and does not require high‐pressure piping. Herein, highly conductive poly(phenylene alkylene) ion‐exchange membranes (IEMs) are micropatterned with different surface geometries for MCDI. The micropatterned membranes increase the interfacial area with the liquid stream leading to a 700 mV reduction in cell voltage when operating at constant current (2 mA cm−2; 2000 ppm NaCl feed) while improving the energy normalized adsorbed salt (ENAS) value by 1.4 times. Combining the micropatterned poly(phenylene alkylene) IEMs with poly(phenylene alkylene) ionomer‐filled electrodes reduces the cell voltage by 1000 mV and improves the ENAS values by 2.3 times relative to the base case. This reduction in cell voltage allows for higher current density operation (i.e., 3–4 mA cm−2) . The reduction in cell voltage is ascribed to the ameliorating ohmic resistances related to ion transport at the membrane‐process stream interface and in the carbon cloth electrode. Finally, porous ionic conductors are implemented into the spacer channel with flat and micropatterned IEM configurations and ionomer infiltrated electrodes. For the configuration with flat IEMs, the porous ionic conductor improves ENAS values across the current density regime (2–4 mA cm−2), while for micropatterned IEMs it gets improved only at 4 mA cm−2.

Funder

Office of Naval Research

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3