Effects of feeding mode on the performance, life span and greenhouse gas emissions of a vertical flow macrophyte assisted vermifilter

Author:

Singh Rajneesh,Ray Chittaranjan,Miller Daniel N.ORCID,Durso Lisa M.,Meneses Yulie,Bartelt-Hunt Shannon,D’Alessio MatteoORCID

Abstract

AbstractThis study was conducted to investigate the impact of intermittent feeding on performance, clogging, and gaseous emission on macrophyte assisted vermifiltration (MAVF) based treatment system. Synthetic slaughterhouse wastewater was applied to two different integrated vertical flow based MAVFs. Triplicates were used throughout the study. Eisenia fetida earthworms were added to MAVFs, and Carex muskingmenis plants were planted. Wastewater was applied to the reactors on 1) intermittent (8 h/day) (IMAVF) and 2) continuous (24 h/day) (CMAVF) basis. The average chemical oxygen demand, total nitrogen, and total phosphorous removals achieved by the IMAVF were 80.2 ± 1.6%, 53.9 ± 1.3% and 66.5 ± 1% respectively, and 68.3 ± 1.3%, 61.2 ± 1.4%, and 60.5 ± 1.4% by the CMAVF, respectively. The diffusion of air to the bedding of IMAVFs during no-flow conditions facilitated higher organics oxidation, adsorption of phosphorous, nitrification, and ammonification. At the end of the study, hydraulic conductivity of IMAVF and CMAVF were found to be 0.036 cm/s and 0.037 cm/s, respectively. CO2, CH4 and N2O emissions from IMAVF were 245.5 ± 38.0 mg C/m2, 5.0 ± 4.6 mg C/m2 and 2513.5 ± 2629.9 μg N/m2 respectively, while CO2, CH4 and N2O emissions from CMAVF were 123.3 ± 14.5 mg C/m2, 74.8±45.2 mg C/m2 and 328.4 ± 93.4 μg N/m2, respectively. Intermittent application of influent could be considered for improving the performance and lifespan of MAVFs, causing lower environmental footprints.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,Waste Management and Disposal,Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3