Abstract
AbstractReliable access to clean and affordable water is prerequisite for human well being, but its provision in cities generates environmental externalities including greenhouse gas (GHG) emissions. As policy-makers target opportunities to mitigate GHGs in line with the Paris Agreement, it remains vague how urban water management can contribute to the goal of limiting climate warming to 1.5 °C. This perspective guides policy-makers in the selection of innovative technologies and strategies for leveraging urban water management as a climate change mitigation solution. Recent literature, data and scenarios are reviewed to shine a light on the GHG mitigation potential and the key areas requiring future research. Increasing urban water demands in emerging economies and over-consumption in developed regions pose mitigation challenges due to energy and material requirements that can be partly offset through end-use water conservation and expansion of decentralized, nature-based solutions. Policies that integrate urban water and energy flows, or reconfigure urban water allocation at the river basin-level remain untapped mitigation solutions with large gaps in our understanding of potentials.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Pollution,Waste Management and Disposal,Water Science and Technology
Reference57 articles.
1. Rogelj, J. et al. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change (eds Masson-Delmotte, V. et al.) In press (2018).
2. Mo, W., Wang, R. & Zimmerman, J. B. Energy–water nexus analysis of enhanced water supply scenarios: a regional comparison of Tampa Bay, Florida, and San Diego, California. Environ. Sci. Technol. 48, 5883–5891 (2014).
3. Sambito, M. & Freni, G. LCA methodology for the quantification of the carbon footprint of the integrated urban water system. Water 9, 395 (2017).
4. Meron, N., Blass, V. & Thoma, G. A national-level LCA of a water supply system in a Mediterranean semi-arid climate—Israel as a case study. Int. J. Life Cycle Assess. 25, 1133–1144 (2020).
5. Hsien, C., Low, J. S. C., Fuchen, S. C. & Han, T. W. Life cycle assessment of water supply in Singapore—a water-scarce urban city with multiple water sources. Resour. Conserv. Recycl. 151, 104476 (2019).
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献