Abstract
AbstractRecent advancements in membrane-assisted seawater electrolysis powered by renewable energy offer a sustainable path to green hydrogen production. However, its large-scale implementation faces challenges due to slow power-to-hydrogen (P2H) conversion rates. Here we report a modular forward osmosis-water splitting (FOWS) system that integrates a thin-film composite FO membrane for water extraction with alkaline water electrolysis (AWE), denoted as FOWSAWE. This system generates high-purity hydrogen directly from wastewater at a rate of 448 Nm3 day−1 m−2 of membrane area, over 14 times faster than the state-of-the-art practice, with specific energy consumption as low as 3.96 kWh Nm−3. The rapid hydrogen production rate results from the utilisation of 1 M potassium hydroxide as a draw solution to extract water from wastewater, and as the electrolyte of AWE to split water and produce hydrogen. The current system enables this through the use of a potassium hydroxide-tolerant and hydrophilic FO membrane. The established water-hydrogen balance model can be applied to design modular FO and AWE units to meet demands at various scales, from households to cities, and from different water sources. The FOWSAWE system is a sustainable and an economical approach for producing hydrogen at a record-high rate directly from wastewater, marking a significant leap in P2H practice.
Publisher
Springer Science and Business Media LLC
Reference56 articles.
1. IRENA. Global Energy Transformation: A Roadmap to 2050 (International Renewable Energy Agency, 2019); Abu Dhabi; https://www.irena.org/publications/2019/Apr/Global-energy-transformation-A-roadmap-to-2050-2019Edition.
2. Chi, J. & Yu, H. Water electrolysis based on renewable energy for hydrogen production. Chin. J. Catal. 39, 390–394 (2018).
3. Chen, Q., Kuang, Z., Liu, X. & Zhang, T. Energy storage to solve the diurnal, weekly, and seasonal mismatch and achieve zero-carbon electricity consumption in buildings. Appl. Energy 312, 118744 (2022).
4. IRENA. Innovation Landscape Brief: Renewable Power-to-Hydrogen (International Renewable Energy Agency, 2019); Abu Dhabi; https://www.irena.org/Publications/2019/Sep/Enabling-Technologies.
5. IRENA. Geopolitics of the Energy Transformation: The Hydrogen Factor (International Renewable Energy Agency, 2022); Abu Dhabi; https://www.irena.org/publications/2022/Jan/Geopolitics-of-the-Energy-Transformation-Hydrogen.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献