Abstract
AbstractThe etched Mo2C MXene with a layered structure was characterized as an environmentally friendly catalyst in the bisphenol A (BPA) removal by advanced oxidation. 99.75% of BPA was degraded in the oxidation system constructed using Mo2C MXene and peroxymonosulfate (PMS). The Mo2C MXene was recyclable, with a high removal percentage (89.29%) of BPA after even four cycles. The catalysis of Mo2C MXene on PMS was due to the Mo-deficit vacancy defects. The electron paramagnetic resonance technique and density functional theory (DFT)-based density of states calculations verified defect signals. In addition, the defective Mo2C MXene and PMS have strong binding and electron transfer capabilities. The reactive oxygen species (ROS, including O2•−, 1O2, SO4•−, and •OH) produced by Mo2C MXene activates PMS, leading to BPA degradation. The condensed Fukui function predicted the active sites of the BPA molecule and found that the O1, O2, C3, C4, C6, C12, C15, and C16 sites have higher electrophilic reactivity. The C, C–C bonds, or C4/C16 sites in the isopropyl group connecting the two phenolic rings were attacked first, then further transformed BPA into non-toxic or low toxic small molecule degradation products through a series of reactions such as bond-breaking, addition, hydroxylation, and ring-opening. Moreover, the Mo2C MXene/PMS system has strong applicability in actual water bodies. The study provides valuable insights into PMS activation by two-dimensional MXenes to remove toxic organic pollutants in an aqueous matrix.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Pollution,Waste Management and Disposal,Water Science and Technology
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献