Very-large-scale integrated quantum graph photonics

Author:

Bao Jueming,Fu ZhaorongORCID,Pramanik TanumoyORCID,Mao JunORCID,Chi Yulin,Cao YingkangORCID,Zhai Chonghao,Mao Yifei,Dai TianxiangORCID,Chen Xiaojiong,Jia Xinyu,Zhao Leshi,Zheng Yun,Tang Bo,Li ZhihuaORCID,Luo Jun,Wang Wenwu,Yang YanORCID,Peng Yingying,Liu DajianORCID,Dai Daoxin,He QiongyiORCID,Muthali Alif Laila,Oxenløwe Leif K.ORCID,Vigliar CaterinaORCID,Paesani StefanoORCID,Hou HuiliORCID,Santagati RaffaeleORCID,Silverstone Joshua W.,Laing AnthonyORCID,Thompson Mark G.,O’Brien Jeremy L.,Ding YunhongORCID,Gong QihuangORCID,Wang JianweiORCID

Abstract

AbstractGraphs have provided an expressive mathematical tool to model quantum-mechanical devices and systems. In particular, it has been recently discovered that graph theory can be used to describe and design quantum components, devices, setups and systems, based on the two-dimensional lattice of parametric nonlinear optical crystals and linear optical circuits, different to the standard quantum photonic framework. Realizing such graph-theoretical quantum photonic hardware, however, remains extremely challenging experimentally using conventional technologies. Here we demonstrate a graph-theoretical programmable quantum photonic device in very-large-scale integrated nanophotonic circuits. The device monolithically integrates about 2,500 components, constructing a synthetic lattice of nonlinear photon-pair waveguide sources and linear optical waveguide circuits, and it is fabricated on an eight-inch silicon-on-insulator wafer by complementary metal–oxide–semiconductor processes. We reconfigure the quantum device to realize and process complex-weighted graphs with different topologies and to implement different tasks associated with the perfect matching property of graphs. As two non-trivial examples, we show the generation of genuine multipartite multidimensional quantum entanglement with different entanglement structures, and the measurement of probability distributions proportional to the modulus-squared hafnian (permanent) of the graph’s adjacency matrices. This work realizes a prototype of graph-theoretical quantum photonic devices manufactured by very-large-scale integration technologies, featuring arbitrary programmability, high architectural modularity and massive manufacturing scalability.

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3