Abstract
AbstractNucleosomes are DNA–protein complexes composed of histone proteins that form the basis of eukaryotic chromatin. The nucleosome was a key innovation during eukaryotic evolution, but its origin from histone homologues in Archaea remains unclear. Viral histone repeats, consisting of multiple histone paralogues within a single protein, may reflect an intermediate state. Here we examine the diversity of histones encoded by Nucleocytoviricota viruses. We identified 258 histones from 168 viral metagenomes with variable domain configurations including histone singlets, doublets, triplets and quadruplets, the latter comprising the four core histones arranged in series. Viral histone repeats branch phylogenetically between Archaea and eukaryotes and display intermediate functions in Escherichia coli, self-assembling into eukaryotic-like nucleosomes that stack into archaeal-like oligomers capable of impacting genomic activity and condensing DNA. Histone linkage also facilitates nucleosome formation, promoting eukaryotic histone assembly in E. coli. These data support the hypothesis that viral histone repeats originated in stem-eukaryotes and that nucleosome evolution proceeded through histone repeat intermediates.
Funder
Merton College, University of Oxford
Royal Society
Leverhulme Trust
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献