Transcriptomic analysis of human primary breast cancer identifies fatty acid oxidation as a target for metformin

Author:

Lord Simon R.ORCID,Collins Jennifer M.,Cheng Wei-Chen,Haider Syed,Wigfield Simon,Gaude Edoardo,Fielding Barbara A.,Pinnick Katherine E.,Harjes Ulrike,Segaran Ashvina,Jha Pooja,Hoefler Gerald,Pollak Michael N.,Thompson Alastair M.,Roy Pankaj G.,English Ruth.,Adams Rosie F.,Frezza Christian,Buffa Francesca M.,Karpe Fredrik,Harris Adrian L.ORCID

Abstract

Abstract Background Epidemiological studies suggest that metformin may reduce the incidence of cancer in patients with diabetes and multiple late phase clinical trials assessing the potential of repurposing this drug are underway. Transcriptomic profiling of tumour samples is an excellent tool to understand drug bioactivity, identify candidate biomarkers and assess for mechanisms of resistance to therapy. Methods Thirty-six patients with untreated primary breast cancer were recruited to a window study and transcriptomic profiling of tumour samples carried out before and after metformin treatment. Results Multiple genes that regulate fatty acid oxidation were upregulated at the transcriptomic level and there was a differential change in expression between two previously identified cohorts of patients with distinct metabolic responses. Increase in expression of a mitochondrial fatty oxidation gene composite signature correlated with change in a proliferation gene signature. In vitro assays showed that, in contrast to previous studies in models of normal cells, metformin reduces fatty acid oxidation with a subsequent accumulation of intracellular triglyceride, independent of AMPK activation. Conclusions We propose that metformin at clinical doses targets fatty acid oxidation in cancer cells with implications for patient selection and drug combinations. Clinical Trial Registration NCT01266486.

Funder

Breast Cancer Research Foundation

Oxford University | Oxford Cancer Imaging Centre

Cancer Research UK

Funder: Oxford NIHR Biomedical Research Centre. Grant reference number: A93195

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3