Machine learning random forest for predicting oncosomatic variant NGS analysis

Author:

Pellegrino Eric,Jacques Coralie,Beaufils Nathalie,Nanni Isabelle,Carlioz Antoine,Metellus Philippe,Ouafik L’Houcine

Abstract

AbstractSince 2017, we have used IonTorrent NGS platform in our hospital to diagnose and treat cancer. Analyzing variants at each run requires considerable time, and we are still struggling with some variants that appear correct on the metrics at first, but are found to be negative upon further investigation. Can any machine learning algorithm (ML) help us classify NGS variants? This has led us to investigate which ML can fit our NGS data and to develop a tool that can be routinely implemented to help biologists. Currently, one of the greatest challenges in medicine is processing a significant quantity of data. This is particularly true in molecular biology with the advantage of next-generation sequencing (NGS) for profiling and identifying molecular tumors and their treatment. In addition to bioinformatics pipelines, artificial intelligence (AI) can be valuable in helping to analyze mutation variants. Generating sequencing data from patient DNA samples has become easy to perform in clinical trials. However, analyzing the massive quantities of genomic or transcriptomic data and extracting the key biomarkers associated with a clinical response to a specific therapy requires a formidable combination of scientific expertise, biomolecular skills and a panel of bioinformatic and biostatistic tools, in which artificial intelligence is now successful in developing future routine diagnostics. However, cancer genome complexity and technical artifacts make identifying real variants challenging. We present a machine learning method for classifying pathogenic single nucleotide variants (SNVs), single nucleotide polymorphisms (SNPs), multiple nucleotide variants (MNVs), insertions, and deletions detected by NGS from different types of tumor specimens, such as: colorectal, melanoma, lung and glioma cancer. We compared our NGS data to different machine learning algorithms using the k-fold cross-validation method and to neural networks (deep learning) to measure the performance of the different ML algorithms and determine which one is a valid model for confirming NGS variant calls in cancer diagnosis. We trained our machine learning with 70% of our data samples, extracted from our local database (our data structure had 7 parameters: chromosome, position, exon, variant allele frequency, minor allele frequency, coverage and protein description) and validated it with the 30% remaining data. The model offering the best accuracy was chosen and implemented in the NGS analysis routine. Artificial intelligence was developed with the R script language version 3.6.0. We trained our model on 70% of 102,011 variants. Our best error rate (0.22%) was found with random forest machine learning (ntree = 500 and mtry = 4), with an AUC of 0.99. Neural networks achieved some good scores. The final trained model with the neural network achieved an accuracy of 98% and an ROC-AUC of 0.99 with validation data. We tested our RF model to interpret more than 2000 variants from our NGS database: 20 variants were misclassified (error rate < 1%). The errors were nomenclature problems and false positives. After adding false positives to our training database and implementing our RF model routinely, our error rate was always < 0.5%. The RF model shows excellent results for oncosomatic NGS interpretation and can easily be implemented in other molecular biology laboratories. AI is becoming increasingly important in molecular biomedical analysis and can be very helpful in processing medical data. Neural networks show a good capacity in variant classification, and in the future, they may be useful in predicting more complex variants.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3